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Abstract: We consider, in flux compactification of heterotic string theory, spacetime-

filling five-branes. Stabilizing the fivebrane involves minimizing the combined energy den-

sity of the tension and a Coulomb potential associated with an internal 2-dimensional

wrapping. After reviewing the generalized calibration under such circumstances, we con-

sider a particular internal manifold based on a T 2 bundle over a conformally rescaled K3.

Here, we find two distinct types of wrapping. In one class, the fivebrane wraps the fibre

T 2 which belongs to a cyclic homotopy group. The winding number is not extensive, yet

it maps to D3-brane number under a U-duality map to type IIB side. We justify this by

comparing properties of the two sides in detail. Fivebranes may also wrap a topological

2-cycle of K3, by saturating a standard calibration requirement with respect to a closed

Kähler 2-form JK3 of K3. We close with detailed discussion on F-theory dual of these

objects and related issues.
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1. Introduction

Over the last few years, flux compactification of string theory has proven to be a rich

playing ground for connecting to real world. From building a realistic particle physics

model to understanding the inflation era, it has given many new insights. Existence of

landscape [1 – 4], namely a large number of discrete vacua, stable and semi-stable [5], offers

us a completely different view on our universe.

Much of these developments came from a special subclass of type IIB flux compact-

ification, where the internal manifold is a warped Calabi-Yau [6]. General supersymme-

try requirements in type IIB and IIA are known to demand much less, known as SU(3)-

structure [7 – 13], and we do not yet have a clear picture of vacua in this more general

setting. Notable exceptions are the so-called F-theories, which are IIB compactifications

with nonuniform dilaton-axion. In particular, the classic example of F-theory on K3×K3

has been explored from early on with fluxes turned on [14 – 20]. This example is also

interesting because of a known U-dual map to the heterotic side.

Flux compactification of the heterotic string theory [21] was first considered in 1986

by Strominger, who gave a complete characterization of supersymmetry requirements [22].

While the geometry is not as simple as warped Calabi–Yau, it has an SU(3) holonomy

with respect to a torsionful connection, which is simpler than the general SU(3) structure

manifold. The heterotic flux compactification is known to evade the usual no-go theorem

against smooth flux compactification, at the cost of introducing higher order curvature

term in the equation of motion and a Bianchi identity [23, 24]. It is known that the
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smooth compactification is available only if one stays far away from minimal embedding

configuration of the gauge bundle on the internal manifold [25, 26].

No explicit solution to the heterotic system is available. However, Fu and Yau proved

an existence theorem for a smooth solution whose internal manifold is a T 2 fibre bundle

over the base of conformally rescaled K3 [27]. It is expected that this class of solution

would map to the above mentioned K3×K3 F-theory (or its IIB orientifold limit), under

a chain of U-duality map [28]. For the first time, we have a reasonably explicit dual pair of

flux compactification model which deviates significantly from the conformally Calabi-Yau

examples of IIB, on which much of recent applications are based. The purpose of this

paper is to explore this pair, largely from the heterotic side, with emphasis on putting

extra structures due to fivebranes. Under the U-dual map from F/IIB side, D-branes must

be emulated by fivebranes, strings, and the gauge bundle. In this respect, understanding

of fivebrane in the heterotic side remains an important issue in further exploration of this

class of solution.

This note is organized as follows. After a quick summary of supersymmetry condition

with flux in section 2, we import the generalized calibration of M5 branes and adapt it to

the heterotic string theory in section 3. Here flux acts to contribute magnetic Coulomb

energy to fivebranes which modifies the problem of finding supersymmetric brane configu-

rations significantly. Section 4 outlines Fu-Yau solution and delineates how the generalized

calibration of fivebrane specializes to this background. Two types of spacetime-filling five-

branes are found. One that winds around a homotopically cyclic T 2 fibre, and those which

wrap certain homology 2-cycles and orthogonal to the flux. Section 5 and 6 are devoted

to complete characterization of these fivebranes, including detailed issue of tadpole condi-

tions. In particular, fivebranes winding on T 2 are identified as U-dual of D3 branes in IIB

or F-theory, despite the fact that the winding number is not an extensive quantity. We

show that the cyclic nature of the T 2 winding number is in fact precisely mirrored in the

D3 brane number on F/IIB side. Section 7 tidies up some loose ends associated with this

U-dual map to F/IIB side, where among other things, counting of worldvolume degrees of

freedom are considered with and without fluxes.

2. Flux compactification of heterotic string theory

We start with the bosonic part of the supergravity/super-Yang-Mills action in ten dimen-

sions,1

L =
1

2κ2
10

√
−G e−2Φ

[

R(ω) − 1

12
HMNP HMNP + 4(∇MΦ)2

+
α′

8

{

tr(FMNFMN ) − tr(RMN (ω−)RMN (ω−))
}

]

,

(2.1)

with anti-Hermitian basis for the gauge field and anti-symmetric generators for the curva-

ture, both of the unit normalization. According to Bergshoeff et.al. [24], the curvature that

1We follow [29] for conventions, except for using anti-hermitian basis for the gauge field.
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appears in the last term of the action is the one with torsion −1
2H with the convention that

the connection with torsion +1
2H appears in the supersymmetry variation of gravitino.

With supersymmetry, the metric in string frame has no warp factor,

GMN dxMdxN = ηµν dxµdxν + gmn dymdyn , (2.2)

with a metric gmn on the compact manifold M6. Supersymmetry also implies a complex

structure J which is integrable,

0 = Nmn
p = Jm

q∇[qJn]
p − Jn

q∇[qJm]
p , (2.3)

with respect to which the metric gmn is hermitian. J is also parallel under a torsionful

connection

∇(+)
m Jnp = 0 , . (2.4)

with the connection having a torsion H/2.2

Supersymmetry relates the gradient of the complex structure J and that of the dilaton

Φ, and the antisymmetric tensor H. First, H can be identified with the so-called Bismut

torsion [30, 31]

Hmnp = −3Jm
qJn

rJp
s∇[qJrs] , (2.5)

and the dilaton is related to J as

∇mΦ =
3

4
Jnp∇[mJnp] . (2.6)

The relation between dilaton and H can be also read off from the above,

∇mΦ =
1

4
JmnJpqH

npq , (2.7)

and tells us that the non-primitive part of H is fully encoded in dΦ.

Note that, from these, we also have

0 = d
(

e−2ΦJ ∧ J
)

, (2.8)

and

H = − ∗ e2Φd
(

e−2ΦJ
)

, (2.9)

once we make use of the hermiticity. Throughout this note, ∗ without a subscript denotes

the Hodge-star operation with respect to the six dimensional metric g. In particular, the

latter can be rewritten as

∗
(

e−2ΦH
)

= d
(

e−2ΦJ
)

, (2.10)

which automatically solves the equation of motion for H.

In compactifying the heterotic theory, an important topological constraint is found in

the Bianchi identity of H, which reads,

dH =
α′

4

[

tr(R′ ∧ R′) − tr(F ∧ F )
]

, (2.11)

2That is, the spin connection is shifted as ω
a
bµ → ω

a
(+)bµ = ω

a
bµ + 1

2
H

a
bµ in our normalization.
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The curvature 2-form R′ is ambiguous as far as anomaly cancelation is concerned [32].

While the natural choice with the given form of the action would be that of the connection

with torsion −H/2 [33, 24], any shift of torsion piece is allowed [34]. Also, as elaborated

in ref. [25], a smooth and large compactification necessarily implies that H2 is of order

α′ so the torsion part of R′ contributes only a higher order term on the right hand side.

A convenient choice for R′ is to take the so-called Hermitian connection, whereby the

right hand side is of Hodge type (2, 2). Since dH is of Hodge type (2, 2) also, this choice

represents a consistent truncation of this equation.

When fivebranes are present, the Bianchi identity will acquire source terms as

dH =
α′

4

[

tr(R′ ∧ R′) − tr(F ∧ F ) − 16π2δfivebrane

]

, (2.12)

which could modify the topological constraint on the gauge bundle. Another way to view

this is to consider the fivebranes as singular limits of the gauge bundle, where the Hermitian

Yang-Mills degenerates such that trF ∧F becomes a delta function source. The convention

here is such that supersymmetric F is anti-self-dual. Since we are using the anti-hermitian

basis with unit normalization also, the density trF ∧ F/16π2 integrates to a nonnegative

integer against a topological 4-cycle.

3. Generalized calibration for fivebranes

Let us consider fivebranes which are spacetime-filling in a heterotic flux compactification

with a 3 + 1 Minkowski spacetime intact. Such fivebranes may be alternatively considered

as small instanton limits of the gauge bundle. They would wrap two-cycles in internal

manifold and thus are of co-dimension 4 objects. The two worldvolume directions along

M6 should span out a two-dimensional surface, which we will denote by Σ. In this note, we

will consider such fivebranes in the probe limit but will be careful to maintain the tadpole

cancelation conditions for consistency.

For simplicity, we will consider configurations with no worldvolume field strength

turned on. These are completely characterized by the two-dimensional embedding Σ into

M6, and we are lead to the following energy functional per unit 3-volume,

vol3+1 y

[
∫

Σ
e−2Φvol5+1 −

∫

Σ
B6

]

, (3.1)

to be minimized, where B6 is a 6-form potential dual to B2 and y denotes exterior contrac-

tion between differential forms. The first term is the contribution from the tension of the

fivebrane, which explains the presence of e−2Φ, while the second is the minimal coupling

which incorporates the energy due to Coulombic potential B6. With the above general

form of H, the dual potential is computed as

dB6 = e−2Φ ∗9+1 H = e−2Φ(∗H) ∧ vol3+1 = d(e−2ΦJ) ∧ vol3+1 , (3.2)

which gives

B6 = e−2ΦJ ∧ vol3+1 , (3.3)
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up to an additive ambiguity of a closed 6-form. Since

vol5+1 = volΣ ∧ vol3+1 , (3.4)

the energy functional of the wrapped fivebrane, per unit 3-volume, is

E(Σ) =

∫

Σ
e−2ΦvolΣ −

∫

Σ∗(e−2ΦJ) . (3.5)

A stable configuration of a wrapped fivebrane is obtained only if E is minimized against

deformation of the embedding Σ into M6.

δE(Σ) = 0 . (3.6)

With the current gauge choice of B6, in particular, this energy functional is clearly non-

negative. One class of minimized solution would be obtained for Σ’s for which we have

E(Σ) = 0 . (3.7)

Here we should emphasize that the value of E is not necessarily the physical energy. Only

its variation is important for our purpose. In a later example, we will shift the definition

of the energy by a closed form, giving it a more familiar shape.

Minimization of E is clearly a necessary condition for supersymmetry. Here we would

like to show that E = 0 is a consequence of generalized calibration; in other words, configu-

rations with E = 0 are actually supersymmetric. For this, we will regard our fivebranes as

M5 branes in the heterotic M-theory [35 – 37], which are orthogonal to the 11-th direction.3

G10+1
AB dXAdXB = e4Φ/3dx2

11 + e−2Φ/3GMNdxMdxN

= e4Φ/3dx2
11 + e−2Φ/3 (ηµνdxµdxν + gmndymdyn) , (3.8)

for an interval along x11, while there is nontrivial 3-form potential C3

dC3 = dx11 ∧
1

6
Hmnp dym ∧ dyn ∧ dyp , (3.9)

whose equation of motion give us a dual 6-form C6 such that

dC6 = ∗10+1dC3 = e−2Φ ∗9+1 H , (3.10)

where the second Hodge-star operation is with respect to the string metric as before. Of

course, we may now identify dB6 = dC6. Instead of setting B6 = C6, let us leave the

additive gauge freedom in definition of C6 for a while.

According to ref. [40], an M5-brane with 4 translational symmetries along xµ may be

calibrated as follows. The energy density functional per unit 3-volume is composed of two

pieces. The first is the warped volume density
∫

Σ

√

−Det
(

e−2Φ/3η
)

·
√

Det
(

e−2Φ/3h
)

, (3.11)

3For more general form of the heterotic-M theory in the presence of flux, see Refs. [38, 39].
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with the induced metric h from g on the embedding surface Σ, which is actually
∫

Σ
e−2Φ

√

Det (h) (3.12)

The second piece is the Coulomb energy density, which goes as

−
∫

Σ∗
(

volη3+1y C6

)

. (3.13)

The sum of these two terms are total energy density of the configuration

E ′ =

∫

Σ
e−2Φ

√

Det (h) −
∫

Σ∗
(

volη3+1y C6

)

. (3.14)

For calibration, there exists a closed 2-form K such that

E ′ ≥
∫

Σ
K , (3.15)

is saturated precisely for the supersymmetrically wrapped branes. The deformation of the

surface Σ → Σ′ would change the energy E ′ while
∫

Σ′

K −
∫

Σ
K =

∫

V
dK = 0 , (3.16)

with the interpolating volume V whose two boundaries are Σ and Σ′. Thus, such a K, to

be found via supersymmetry conditions, will provide the absolute minimum energy to be

saturated.

The closed form K is found as follows. One first finds a covariantly constant spinor, ε,

which is responsible for the supersymmetry of the background geometry. The supercharge

Q(ε) associated with ε will have the property

2Q(ε)2 = E ′ −
∫

Σ
K , (3.17)

ensuring the generalized calibration. The 2-form K is found to be

K = −volη3+1y C6 + ε̄Γε
√

−Det
(

e−2Φ/3η
)

, (3.18)

where Γ is the pull-back of ΓABdXAdXB to Σ. Γ differs from its counterpart in the

heterotic string theory, call it γ, by an overall factor of e−2Φ/3. Then the final form of K is

K = −volη3+1y C6 + e−2Φ Σ∗ ( ε̄γmnε dxmdxn) . (3.19)

The bulk 2-form in the latter term, we realize to be precisely the fundamental 2-form J of

the internal dimension, so we have

K = −volη3+1y C6 + e−2ΦΣ∗(J) . (3.20)

K should be closed, dK = 0, if we have supersymmetry in the bulk, and indeed this follows

from one of our supersymmetric equation for any heterotic flux background, e−2Φ ∗ H =

d
(

e−2ΦJ
)

. Finally the two C6 pieces in E ′ and K cancel each other, and

E = E ′ − K = 0 , (3.21)

is the generalized calibration condition, regardless of the gauge choice for C6, as we

promised above.
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4. A smooth compactification and calibration

A nonsingular flux compactification of the heterotic string theory was recently found by Fu

and Yau [27], which was further elaborated on by Becker et.al. [28] The string theory on

this background is believed to be U-dual to an orientifold limit of K3×K3 compactification

of F-theory with fluxes turned on. One can describe the geometry as a T 2 fibred over a

conformally rescaled K3, where the metric and the fundamental 2-form are

g = e2ΦgK3 + |θ|2 , (4.1)

and

J = e2ΦJK3 +
i

2
θ ∧ θ̄ , (4.2)

with a holomorphic 1-form θ. The dilaton is a function on K3 only. Locally θ should have

the form

θ = dz + α , (4.3)

with ill-defined 1-form α on K3, where z is the holomorphic coordinate on the fibre T 2.

Well-defined T 2 bundle over K3 requires that we have integral Chern classes, which imposes

that“real”and “imaginary” parts of the 2-form

ω =
dθ

2π
√

α′
, (4.4)

belong to integral cohomology of K3. Since we must have

0 = d
(

e−2ΦJ ∧ J
)

⇒ 0 = iJK3 ∧
(

ω ∧ θ̄ − θ ∧ ω̄
)

, (4.5)

we must also require the primitivity of ω in K3.

ω ∧ JK3 = 0 . (4.6)

These exhaust constraints on the geometry except for determination of the dilaton on

K3 and supersymmetry condition on the gauge bundle. Supersymmetry condition on the

gauge bundle is the familiar one. Namely, the field strength F should be of type (1, 1) and

primitive with respect to J .

This ansatz solves all supersymmetry relationships except for actual form of Φ, where

all functional information of the solution is encoded. The authors of ref. [27] choose to

extract the equation for Φ from the Bianchi identity,

dH =
α′

4

[

tr(R′ ∧ R′) − tr(F ∧ F )
]

, (4.7)

where they take the curvature 2-form R′ to be that of the so-called Hermitian connection.

This choice involves a torsion which is not completely anti-symmetric and thus cannot be

of the form, ∼ aH. Nevertheless, the size of this torsion is the same order as H, and

this choice represents a correction term of order ∼ (α′)2 in this equation.4 Also this has

4For smooth and large flux compactification, it turns out that the size of H
2 has to be of order α

′. See

ref. [25] for more detailed explanation. This fact also holds in this solution, naturally.
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the advantage that the right hand side is (2, 2) Hodge type, allowing the equation self-

consistent without a further α′ truncation. We will come back to this anomaly equation

later on to discuss a crucial tadpole condition.

Before proceeding further, let us note that the sizes of the base and of the fibre are

free and also that the zero mode of dilaton, Φ0, is free. A better way to write the ansatz

is,

g = e2(Φ−Φ0)R2
B ĝK3 + l2F |θ|2 , (4.8)

and

J = e2(Φ−Φ0)R2
B ĴK3 +

il2F
2

θ ∧ θ̄ , (4.9)

where the volume of K3 in terms of ĝK3 is normalized to unit. The linear size of the fibre

is 2πlF
√

α′ and the linear size of the base is RB , both of which are free parameters of the

solution. The solution would be trustworthy when R2
B/α′ À 1 and lF À 1. In the following

discussions, however, lF factor either cancels out or appears as an overall coefficient while

e−Φ0RB can be absorbed into the definition of the K3 metric as gK3 = e−2Φ0R2
B ĝK3 and

similarly of the Kähler form. We will suppress these factors, with the understanding that

they can be restored easily and also that their large sizes are important for our discussions.

This heterotic flux compactification is deemed to be U-dual to a well-known F-theory

compactification on K3×K3, or more precisely an orientifold limit thereof, provided that

we add some additional RR and NS-NS fluxes, F3 and H3, on the latter [28, 15]. As was

shown by Sen [41], F-theory on K3 × K3 [42] is a generalization of the orientifold T 2/Z2

times K3 of IIB theory, whereby we move around the D7-branes located at the four tips of

T 2/Z2. In the orientifold limit, each tip represents one O7− plane, 4 pairs of D7 branes,

and the associated SO(8) gauge groups on D7’s.

The duality chasing starts with T-dualization of the T 2/Z2. This will change O7−

and D7’s into O9− and D9’s, and the orbifold is now resolved to regular T 2. However,

the presence of NS-NS flux H3 means that certain off-diagonal value of metric will be

generated [43], so the geometry on this type I side will be such that T 2 has nontrivial

mixing with K3 in the metric. Then, we can switch over to the heterotic side by taking

S-duality [44, 45], whereby mapping F3 to H.

In this note, we are mostly interested in understanding possible brane configurations

on the two sides and comparing their properties, in part because this will strengthen this

duality conjecture and also in part this could diversify possible models based on such

compactification. As we noted above, the IIB background comes with D7 branes as part

of the geometric data. On top of this, we can think of two more classes of D-brane

configurations with supersymmetry. One class consists of D3 branes transverse to the

compact directions. The other is D7 branes intersecting with the indigenous D7 branes.

The latter wraps K3 while the former wraps T 2/Z2 and a 2-cycle on K3. The latter

would be supersymmetric only under a tight restriction on bulk complex moduli, unlike

the former. We will come back to moduli of these D-branes in a later section.

Interestingly, both classes of these D-branes map to D5’s in type I, and then to five-

branes upon S-duality to the heterotic side. D3 can be seen to correspond to fivebrane

wrapping the fibre T 2, while D7’s heterotic counterpart is a fivebranes wrapping 2-cycles
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in the base K3. For the rest of this note, we will consider issues related to these calibrated

fivebranes on the heterotic side. A simplifying fact is the presence of e2Φ factor on the

conformal rescaling of K3, so that the Coulomb energy density has a simple form,

∫

Σ∗
(

e−2ΦJ
)

=

∫

Σ∗ (JK3) +
i

2

∫

Σ∗
(

e−2Φθ ∧ θ̄
)

. (4.10)

Since dJK3 = 0, the first piece in the right-hand-side is topological

δ

∫

Σ∗(JK3) = 0 , (4.11)

so the problem of minimizing the energy functional becomes that of saturating the bound

E ′ =

∫

Σ
e−2ΦvolΣ − i

2

∫

Σ∗
(

e−2Φθ ∧ θ̄
)

≥
∫

Σ∗(JK3) . (4.12)

In terms of the generalized calibration presented in the previous section, this split corre-

sponds to the choice of gauge for C6,

C6 =
i

2
e−2Φθ ∧ θ̄ ∧ volη3+1 , (4.13)

forcing

K = JK3 , (4.14)

which is indeed a closed 2-form. In the large volume limit, E ′ is a well-normalized measure

of the energy density associated with the fivebrane.

The configuration Σ saturating the lower bound E ′(Σ) =
∫

Σ∗(K) or equivalently E = 0

satisfies the local condition

volΣ = Σ∗(J) . (4.15)

Since J is a Hermitian (1,1) form on M6, this condition is satisfied if the embedding

of Σ into M6 is holomorphic. In the background geometry described in section 3, two

independent tangent vectors of Σ pushed forward into the bulk may be written as

ξ + a∂z , ξ̄ + ā∂z̄ , (4.16)

with suitable coefficient a. Here ξ is a tangent vector in K3, which is (1, 0) with the

complex structure JK3. Since M6 is a bundle over the base K3, let us call the bundle

projection map, π,

π : M6 → K3 . (4.17)

One can see that the image π(Σ)(⊂ K3) of the holomorphic embedding Σ is also holomor-

phic, with tangent vectors ξ and ξ̄. The holomorphic surface π(Σ) determines the value of

the integral at the right hand side of (4.12). Thus, we can think of two distinct classes of

solutions, depending on whether the pull-back of JK3 integrates to zero or not.
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5. Fivebranes on T
2, cyclic homotopy, a tadpole, and U-dual D3 branes

We first consider the case
∫

Σ∗(JK3) =

∫

(π(Σ))∗(JK3) = 0 . (5.1)

A holomorphic embedding π(Σ) in K3 with vanishing integral (5.1) is necessarily point-

like. Therefore, Σ can wrap only the T 2 fibre and is localized at the point π(Σ) in the base.

We may take the complex coordinate ζ on the internal part of the worldvolume embedded

as

z = ζ (5.2)

where z is the complex coordinate of the fiber introduced in section 2, with identifications

ζ ∼ ζ + 2πm
√

α′ and ζ ∼ ζ + 2πni
√

α′ (m, n are integers) since Σ is topologically a torus

now. Note that the saturation (5.1) of E(Σ) ≥ 0,

Σ∗(e−2ΦJ) =
i

2
Σ∗(e−2Φdz ∧ dz̄) = e−2ΦvolΣ , (5.3)

occurs automatically for a completely vertical configuration. With this, we have E ′(Σ) = 0.

An interesting fact about the fibre T 2 is that it does not correspond to an element of

the homology group with real coefficients. The effect of twisting due to ωi is that the two

circles of T 2 can become a contractible loop. As a toy example, take an S1 fibred over S2

via Hopf fibration. The metric goes as

ds2
S2 + (dψ + k cos θdφ)2 , (5.4)

with the Hopf number k. The resulting topology of the bundle is S3/Zk and its first

homotopy group is

π1 = Zk . (5.5)

A loop that winds around the fibre S1 k-times becomes contractible. The twisting in M6

is essentially the same type of fibration, except that we now have a pair of S1’s and that

the two-dimensional bases are replaced by 2-cycles in K3. Because of this, a fivebrane

wrapping T 2 (m,n)-times will be homotopically trivial when m or n equals some integer

k whose precise value is determined by the bundle M6. Because a fivebrane can unwrap

when either of the circle becomes contractible, there are in general at least two such integers

k1 and k2, associated with the two circles of T 2 fibre, so that we have in general processes

that shifts

∆Nfivebranes on T 2 = a1k1 + a2k2 (5.6)

for integers a1 and a2.

A simple generalization of this toy model is to consider S1 fibred over (S2)K , with the

metric being
K

∑

p=1

ds2
S2

p
+

(

dψ +
∑

p

mp cos θpdφp

)2

, (5.7)
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in which case the homotopy group would be Zk with k being the greatest common divisor

of {mp}. Although in our case the 1-forms that enter the last terms are associated with

2-cycles in a single K3, this still suggests that k1,2 above should be determined similarly

by what integral linear combination of the generators H2(K3, Z) is used for ω1,2.

However, this does not mean that the dominant unwrapping processes are the ones

that shift the winding number by k1 and k2. Depending on precise geometry, some linear

combination like 2k1 + 5k2 could prove to be the easiest path. Homotopy does not know

anything about the dynamics. In terms of the toy model geometry, the “easiest” path

would correspond to shift of the winding number by a1k1 + a2k2 = mp if p-th S2 happens

to be much smaller than all the others.

In any case, with such a cyclic nature of the winding number, our finding that fivebrane

wrapping T 2 is stable and supersymmetric, may sound strange. Wrapping it k-times will

result in homotopically trivial configuration which can be unraveled and made to contract

to nothing. In fact, depending on details of the metric, it may even be possible to deform

Σ away from this vertical configuration and reduce its area. The point is that such a

deformation is always accompanied by a cost in the Coulomb energy,

∆Eelectric = −
∫

Σ′

i

2
e−2Φθ ∧ θ̄ +

∫

Σ

i

2
e−2Φθ ∧ θ̄ , (5.8)

and that this cost always overrides, if any, the energy gain from the reduction of the area

when the fivebrane is deformed away from T 2. It is the magnetic Coulomb energy that

protects such nontopological configurations.5

We just argued that the winding number of fivebrane over the fibre T 2 is additive

only modulo some integers ki’s. Consistent with this fact is that there is no element of

H2(M6, R) which is Poincare-dual to the T 2 fibre [46, 28]. This non-extensive or cyclic

nature of T 2 winding number raises a number of interesting questions.

First, recall that fivebranes contribute to the tadpole condition for H since they are

magnetic sources. The T 2 winding number will act as a magnetic source to H field along

K3. How is it possible that such a tadpole source can be unwrapped and disappear? The

resolution to this quandary comes from the fact that K3 is not a cycle in the manifold M6.

The fivebrane in question wraps the fibre T 2, and therefore can contribute to a tadpole

condition along the base K3. Normally this tadpole condition would arise from integrating

dH equation over a homology cycle representing K3. However, there is no such cycle as

long as the T 2 bundle is nontrivial. Of course, in the present geometry, we can unwrap the

fivebrane on fibre precisely when the T 2 bundle is nontrivial.

Instead, the relevant tadpole condition arises from integration of J ∧ dH = · · · over

the entire manifold,

∫

M6

J ∧ dH =
α′

4

[∫

M6

J ∧
(

trR′ ∧ R′ − trF ∧ F − 16π2δfivebrane

)

]

. (5.9)

5While the energy density E
′ is such that the fivebrane winding the T

2 fibre has the same energy as

the trivial configuration, one should not take this mean that the T
2 wrapped fivebrane is tensionless. The

coupling to the Coulomb field does not enter the dynamics of the general worldvolume excitations.
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Note that the left hand side does not vanish. Instead we have
∫

M6

J ∧ dH = 4π2α′

∫

K3
|ω|2 , (5.10)

where the contraction of ω is taken with respect to the Calabi-Yau metric gK3 without

the dilaton factor. The right hand side can also be computed, and we have the following

tadpole condition

Nfivebrane on T 2 +

∫

K3
|ω|2 =

1

16π2

∫

K3
trRK3 ∧ RK3 − trF ∧ F . (5.11)

The right-hand-side is

−1

2
p1(K3) +

1

2
p1(F) (5.12)

in terms of the Pontryagin class p1. We have −p1(K3)/2 = 24 while −p1(F)/2 is a

nonnegative integer. Note that this equation does reflect the expectation that the fivebrane

number is interchangeable with the topological number on the right hand side.

Now consider the process of unwrapping a fivebrane on T 2 with all backreaction taken

into account. This process will necessarily involve a fivebrane source which is spread over

the base K3 as well as over T 2. The backreaction of the metric and the torsion is then

such that this fibre-bundle form of the geometry is completely destroyed throughout the

middle step. Since we are not resolving the fivebrane into the gauge bundle, neither of the

Pontryagin numbers will change upon completion of this unwrapping process, leading to

our quandary.

However, the second term on the left, which has something to do with the winding of

T 2 fibre can easily change. The initial and the final configurations are T 2 bundles over K3,

but the interpolating geometries cannot be one. This deformation of the bundle structure

should absorb the difference in Nfivebrane on T 2 and encode it in the integer shift of the

integral of |ω|2. This could occur via a shift of the integral cohomology associated with

ω1,2, or due to change of metric on the base K3. In the former case, another T 2, which is

different from the initial T 2 fibre, emerges as the fibre at the end of the process. In the

latter case, the cohomology class of ω1,2 remains unchanged but their split into self-dual and

anti-self-dual part can change. Because the intersection pairing (relevant to cohomology

class) and the norm differ by a sign in anti-self-dual part of H2(K3), this can also shift the

integrated value of |ω|2.
This does not mean that a homotopically trivial fivebrane can decay to nothing. The

winding configuration represents a supersymmetric vacuum in 3+1 dimensional effective

theory, and thus cannot decay to another supersymmetric vacua. It only means that

we have two (or more) degenerate configurations with different T 2 winding numbers of

the fivebrane. In particular, there should be supersymmetric domain wall configurations

separating these degenerate vacua from one another. It is not difficult to see that the

domain walls themselves should be represented by fivebranes wrapping a 2-cycle in K3

and one of the two circles in T 2. Following how configuration changes as we move from

the side with winding to the other side, one should see the fivebranes gradually unwinding

as a function of the transverse coordinate.
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So far, we addressed various issues entirely within the heterotic theory. Here we would

like to close the section by studying how this unusual nature of T 2 wrapped fivebranes

manifests itself in the U-dual picture. As we noted earlier, these fivebranes map to D3

branes in IIB orientifold. Seemingly, D3 branes carry an integer conserved charge, and we

have a potential conflict.

This can be made more dramatic by replacing D3 by anti-D3. In the heterotic side, one

wraps the fivebrane over T 2 with opposite orientation. Since this breaks supersymmetry,

the false vacuum will try to decay into a supersymmetric one taking away k unit of anti-

fivebranes. Anti-fivebranes on T 2 have an energy function which is just twice the tension

and would favor being unwrapped out of T 2. Without topology protecting them, a k

number of anti-fivebranes on T 2 can then disappear either classically or by tunneling. Can

anti-D3’s also disappear in some quantized unit on IIB side? Although we just phrased the

question in terms of anti-D3’s to make the possible conflict more obvious, the same sort

of question exists for D3’s as well. In term of the latter, the question is whether there are

supersymmetric domain wall configurations with different number of D3 branes on the two

sides.

On IIB side, D3 tadpole condition involves a flux contribution so that we have

0 =

∫

F3 ∧ H3 + ND3 (5.13)

where appropriate normalization constants are understood. On the other hand, F3 and

H3 fluxes can jump in quantized unit across a domain wall formed by a D5-brane or by a

NS5-brane wrapping a 3-cycle [47]. The tadpole must be preserved no matter what, and

ND3 will thus jump across such a domain wall.

When one side of this domain wall contains anti-D3 branes, the domain wall can form

a bubble, inducing decay of a false vacuum with anti-D3 into another false vacuum with

lesser number of anti-D3 or into a true vacuum with no anti-D3 branes. The precise unit

in which ND3 jumps depends on what are initial fluxes in F3 and H3, and which 3-cycle is

used for wrapping NS5 or D5 branes to form the domain wall. If H3 flux is shifted by unit

via a domain wall from NS5 wrapping a cycle A, ND3 will shift by an integer

∮

B
F3 (5.14)

where B is the dual 3-cycle of A, and vice versa. Set of these integers, that is, possible

shifts of ND3 via such domain walls, should match precisely the allowed linear combina-

tions of the two integers k1,2’s we saw in the heterotic side, if the U-duality holds in the

presence of the flux. As in the heterotic case, if one side contains anti-D3 branes, breaking

supersymmetry, the wrapped D5 or NS5 branes will instead appear as an expanding bubble

in 3+1 dimensions, removing anti-D3 branes in these quantized units.

Finally, it is not entirely obvious why the unwrapping of anti-fivebranes has to be via

tunneling on the heterotic side. Of course the U-dual map involves a strong-weak coupling

duality, so we cannot compare directly. Still, ignoring quantum issues, it looks likely that,

even in the heterotic side, the decay of anti-fivebrane on T 2 would occur via tunneling.
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Taking T-dual of a large IIB orientifold along the T 2/Z2, the base manifold remains large

while the fibre may not. An important fact is that the ratio of the size of the base and that

of the fibre could be a large number, and this is unaffected by the final S-duality into the

heterotic side. Furthermore, anti-fivebrane on T 2 will settle down to a point where e−2Φ is

minimized along K3, where the conformally rescaled size of K3 is maximal. These two act

together to force the unwrapping process to be a tunneling process, if the fibre size is much

smaller. Unwinding necessarily involves fivebrane wandering into K3, which could come at

the cost of much larger area. Recall that for anti-fivebrane the net energy is bounded below

by the tension energy due to the area, since the wrong sign of the Coulombic energy term

adds rather than subtract. Also, being at local minimum of e−2Φ implies that unwrapping

will cost even more because the configuration must move away from the local minimum of

this factor also.

There are still more details of this matching between T 2 wrapping fivebranes and D3

branes that must be checked. In particular, it remains a challenging problem to match all

possible tunneling processes in F/IIB side which change the number of D3 branes against

those in the heterotic side which change the T 2 winding number. Equivalently, one would

like to match all possible domain walls of the two sides. A precise matching of this kind

would go a long way in establishing the duality map we have been using and should be a

worthwhile exercise.

6. Fivebranes on 2-cycles in K3

Next, we consider the case
∫

Σ∗(JK3) 6= 0 . (6.1)

In this case, π(Σ) spans a two dimensional surface, and represents a nontrivial element

in the second homology H2(K3) group. To saturate the calibration bound condition,

π(Σ) must be a holomorphic embedding in K3, which means that the pull-back of the

holomorphic (2,0)-form of K3 vanishes

0 = π(Σ)∗(Ω
(2,0)
K3 ) . (6.2)

Once we find such a holomorphic embedding π(Σ), we should search for a uplift it to the

total manifold M6.

This uplifting is not possible unless there is a global section. That is, this last step is

possible only if the restriction of the bundle over π(Σ) is a trivial bundle. This in turns

requires that the Chern class of the bundle integrates to zero over this surface, so that we

must have ∫

Σ
dα = 0 →

∫

Σ
ω1 =

∫

Σ
ω2 = 0 , (6.3)

as well. Once this holds, it comes down to what kind of uplifting is available, which will

depend on topology of π(Σ).

Because the restricted bundle π−1 (π(Σ)) ⊂ M6 is trivial, we can also talk about T 2-

winding number of this uplifting. That is, Σ may wind around the fibre once or more,
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depending on the topology of π(Σ), and this would provide additional quantum number

associated with Σ. Note that this T 2 winding number does not contribute to E ′ since the

contribution to the area is canceled by the Coulomb energy point-wise. Thus, the uplifting

of π(Σ) with additional T 2 winding number represents a threshold bound state of Σ without

the T 2 winding number and a number of the T 2 wrapping fivebrane.

While the above more or less characterize solutions to the supersymmetry conditions,

we can do things more explicitly thanks to the well-known description of the homology of

K3. We can translate all of above as a set of restrictions on various intersection numbers.

Let us call the generators of this homology ΣI (I = 1, . . . , 22), whose intersection numbers

are given by the matrix

CIJ =















−E8

−E8

U

U

U















, U =

(

0 1

1 0

)

, (6.4)

where E8 denotes the 8 × 8 Cartan matrix of the E8 Lie algebra. We expand

[π(Σ)] =

22
∑

I=1

nI [ΣI ] , (6.5)

where nI are integers. The 2-forms ηI Poincare-dual to ΣI are defined by the relation
∫

K3
ηI ∧ v =

∫

ΣI

v , (6.6)

for any closed 2-form v.

JK3 is covariantly constant in terms of K3 metric, and can be expanded as

JK3 =
22
∑

I=1

hIηI , (6.7)

with real hI . K3 is Calabi-Yau, or equivalently, hyperKähler, and has a holomorphic 2-form

Ω
(2,0)
K3 , which can also be represented as a linear combination of η’s,

Ω
(2,0)
K3 =

22
∑

I=1

tIηI . (6.8)

The pull-back of Ω(2,0) must vanish on π(Σ), so we have the first necessary condition for

calibrated π(Σ)
∫

π(Σ)
Ω

(2,0)
K3 =

∑

IJ

CIJnItJ = 0 . (6.9)

Furthermore, the surface should have the right orientation to have positive integral of JK3

which demands that
∫

Σ
Σ∗(JK3) = nIh

J

∫

ΣI

ηJ = CIJnIhJ > 0 . (6.10)
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Obviously at least one of nI should be nonvanishing.

Given such a holomorphic embedding π(Σ), there is well-known counting of its moduli

in K3. Thanks to Ω(2,0), counting of deformation become counting of H1(Σ) [48], which is

in turn related to the Euler number as

dim H1(Σ) = 2 − χ = 2g . (6.11)

There are in general 2g real deformation moduli for genus g surface π(Σ). In terms of

the above decompositions into integral cohomology, there is an alternate formula for this

number, which goes as

2g
?
= 2 −

∫

Σ
c1(Tπ(Σ))

X
= 2 +

∫

Σ
c1(Nπ(Σ)) = 2 +

∫

K3
σ ∧ σ = 2 + CIJnInJ (6.12)

where at X we used the fact 0 = c1(K3) = c1(T )+c1(N), and at ? we assumed that the

surface is connected and smooth. The σ in the integrand denotes the Poincare dual of the

2-cycle π(Σ), σ =
∑

I nIηI . Existence of such a holomorphic embedding implies that the

deformation parameter is nonnegative, so we arrive at

CIJnInJ ≥ −2 (6.13)

which is the 3rd necessary condition.

So far we considered the implication of having nontrivial holomorphic image π(Σ) in

the K3 base. As we saw above, uplifting this to a holomorphic surface in M6 requires

π(Σ) be orthogonal to ω1,2 under the intersection pairing. Writing

ωi =
22
∑

I=1

lIi ηI (i = 1, 2 , lIi are integers) . (6.14)

we have the 4th necessary condition (6.3) as

CIJnI lJi = 0 , (6.15)

When this holds a global section exists, and we could uplift π(Σ) into M6.

Summarizing, we have several necessary conditions among the homology cycle π(Σ) =

nI [ΣI ], JK3 = hIηI , Ω
(2,0)
K3 = tIηI , and ωi = lIi ηI

• CIJnItJ = 0

• CIJnIhJ > 0

• CIJnInJ ≥ −2

• CIJnI lJi = 0

in addition to the bulk supersymmetry conditions

• CIJhI tJ = 0
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• CIJtItJ = 0

• CIJhI lJi = 0

all of which must hold in order for the supersymmetric Σ to exists.

There could be at most 20 independent integer vectors nI ’s which solve the these

equations. The precise number depends on whether ωi’s are entirely along (2, 0) or have

components in H(1,1). Even for those solution that solves all of above requirement, many

of them cannot be realized as a single holomorphic surface of the right orientation. As a

crude example, working with a 2 dimensional subspace, we take ω1 = (1,±1), ω2 = (0, 0)

with

CIJ ∼
(

2 0

0 2

)

. (6.16)

The solution uI satisfying CIJωI
i n

J = 0 is nI = (1,∓1) in each case. The upper sign should

be forbidden since it has wrong orientation.

Another set of interesting example where solution to the above algebraic equations

does not guarantee actual holomorphic surface can be found when we confine ourselves

to generators of one of E8 factor in the H2(K3). Here the surfaces which actually exist

as supersymmetric states are those corresponding to roots of E8. Because −CIJnInJ

measures the length squared of the corresponding root, all 2-cycles of this kind are spheres

with g = 0. Other combinations such as α + 2β, where α and β are pair of distinct

roots, may be arranged to solve all of the above constraints but cannot correspond to an

irreducible, smooth, connected, and holomorphic surface.

Reversely, the existence of such holomorphic π(Σ) imposes constraints on the base K3

manifold. Each wrapped 2-cycle of this kind must belong to the set

Pic(K3) ≡ H2(K3, Z) ∩ H1,1(K3) (6.17)

which is called the Picard lattice. The Picard lattice is null for generic K3, while the rank

of this lattice can be as larger as 20 by adjusting Ω
(2,0)
K3 since h1,1 = 20. When the rank

is maximal the corresponding K3 is called attractive [19]. This picks out Ω
(2,0)
K3 among

discrete possibilities, so the remaining geometric moduli are all in the choice of JK3. Since

JK3 should be orthogonal to Ω
(2,0)
K3 , an attractive K3 would have 20 moduli intact out of

the original 58 K3 moduli.

However, this statement should be taken with a grain salt. Here we are pretending that

we could ignore back reaction of the geometry to such wrapped fivebranes, and in particular

are yet to take into account the modification of tadpole conditions due to these new sources.

We believe a consistent treatment of these effects will take us away from the T 2 fibre bundle

over K3, and will require much more elaborate geometry. The above statement of further

fixing of bulk moduli should be taken verbatim in noncompact local models only, and for

compact cases, backreaction of the geometry should be taken into account. On the other

hand, having these extra fivebranes essentially generates further fluxes, either in the form

of gauge bundle or H itself. The idea of backreaction to additional fivebranes fixing more

moduli must be robust. We wish to come back to this issue in a separate work.
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7. More on U-dual and D-branes

U-dualizing to IIB orientifold T 2/Z2 × K3 involves an S-duality to type I and then T-

duality on T 2. Following the usual rules, it is quite clear that these fivebranes on T 2 are

U-dual to D3-branes in IIB side. Similarly fivebranes wrapping 2-cycles in K3 are dual to

D7-branes, in IIB side, which wrap T 2/Z2 as well as the same 2-cycles in K3. Here let us

address further issues related to this U-duality map between branes, such as the complete

3+1 dimensional massless spectra of the two sides.

Before proceeding, we must first clarify which heterotic theory we are considering.

Since we have a T 2 in the geometry, U-dualization can bring us to either of the pair of the

heterotic theory with E8 × E8 or SO(32), depending on whether we perform one more T-

duality on one of the circle in the fibre or not. Also the supersymmetry requirement solved

by the current solution is common to both theories, so it remains ambiguous which theory

we are discussing. For us, the main difference is in fivebranes. Fivebranes in E8 × E8

theory are direct descendants of M5 branes, and are equipped with a tensor theory on

worldvolume. Fivebranes wrapped on a circle maps under the T-dual map to fivebranes

wrapped on a dual circle in SO(32) heterotic theory, so the worldvolume theory on the

latter must be a vector theory [49].

On the other hand, T-dual of a transverse fivebrane is instead a KK monopole solution.

Thus, when we identify the fivebranes on a 2-cycle in K3 as U-dual of D7 branes wrapping

T 2/Z2 and a 2-cycle in K3, we are implicitly considering them in the heterotic theory which

is S-dual to type I, without further T-dualization on the fibre, and this is SO(32) heterotic

theory. Thus, when we compare fivebranes in the heterotic side to D7 on IIB side, we are

considering SO(32) theory and fivebranes whose worldvolume theory is a vector theory.

With this said, the comparison of the spectra is well established in the absence of flux.

Let us consider the low energy spectra of fivebranes wrapped on 2-cycle Σ and those of

D7 branes wrapped on T 2/Z2 and Σ. Both carry a vector theory, and the only difference

come from how T 2 worth of position moduli of the fivebrane arise from Wilson lines on D7

side. In addition, there are g complex moduli with g being the genus of Σ and a vector on

both sides. Similar consideration shows identical spectra for D3 and its U-dual. Generic

D3 has 6 translational moduli and one 3+1 dimensional vector. These are also obvious

from fivebranes on T 2. For each fivebrane on T 2, there are four translational degrees of

freedom for a position on K3. Four more bosonic massless degrees of freedom arise from

the worldvolume vector multiplet (or the self-dual tensor multiplet) on the worldvolume,

from two Wilson lines generating two scalars in addition to the vector field itself.6 On

IIB side, also without the fluxes, the same counting appears from the adjoint sector of D3

multiplet. The latter corresponds to a Coulomb phase massless degrees of freedom of a

single N = 2 D = 4 SU(2).

What may be less obvious is what happens to this correspondence when fluxes are

turned on. For instance, it is well-known that D3’s are attracted to D7’s in the presences

6If we were dealing with fivebranes from E8×E8 side, the worldvolume has a tensor multiplet instead. But

the same 3+1 dimensional spectra arises since a 5+1 dimensional supersymmetric tensor theory compactified

on a circle gives the same field content as a 5+1 dimensional supersymmetric vector theory.
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of NS-NS B-field along directions transverse to D3 and longitudinal to D7. This can be

understood from the worldvolume theory of D3 as a Fayet-Illiopoulos D-term constants

on D3, which lifts its Coulomb phase to have a finite and positive energy. This effect

comes from anti-self-dual part of BNS−NS along K3. D3 would then become a pair of

non-commutative instantons in D7 gauge theory. U-dual map of this configuration is likely

to be a gauge bundle over K3 on the heterotic side, so this would imply that isolated

fivebranes wrapping T 2 is not really there. Conversely, this lifting of those moduli of D3

along T 2/Z2 would map on the heterotic side to massive Wilson lines on T 2, which seems

very unlikely.

In this case, the problem is solved because of the detailed form of the NS-NS B-field.

The twisting of the bundle, encoded in the holomorphic 1-form α on K3, arises from T-

dualization of NS-NS B form on IIB side. The gauge choice which is convenient for the

T-dualization is

BNS−NS ∼ df ∧ α (7.1)

with f denoting some function on T 2/Z2. Note that the pull-back of this to D7 wrapping

K3 is identically zero, and that the effective FI constants on D3 near the D7 vanishes.

Even if we chose another gauge such as

BNS−NS ∼ f ∧ dα (7.2)

BNS−NS is odd under the orientifold projection and f has to vanish at the four fixed points

of T 2/Z2, and in this orientifold limit the D7 branes are precisely located at these fixed

points. Again the FI constants are not turned on D3 near D7, and the Coulomb branch

moduli of D3’s are intact.

Precise matching of moduli of branes wrapping 2-cycles in K3 is a lot more involved

problem, in part because on the IIB side D7 branes in question could have a worldvolume

gauge bundle [50]. For this, we need a similar characterization of supersymmetric condi-

tions on the heterotic side as well. General supersymmetry condition on D-branes in flux

compactification of type IIB theory is by now understood fairly well [51, 52]. It would

be most interesting to translate this to the heterotic side and formulate the most general

supersymmetric condition including the worldvolume field strengths in the presence of bulk

flux.

8. Summary

We studied calibrated fivebranes in flux compactification of the heterotic string theory. In-

ternal H-flux induces magnetic Coulomb potential for the internal part of the worldvolume,

and a consistent supersymmetry condition in the absence of worldvolume field strength is

found. The resulting calibration condition can have nontrivial solutions even without a

topological winding number in a manner consistent with tadpole conditions. We apply this

setup to a recent class of solution based on T 2 fibre-bundle over a conformally rescaled K3,

and found two distinct set of supersymmetric fivebranes. The fivebranes wrapping T 2 are

supported by flux and also by a cyclic homotopy only, while the other is conventionally

calibrated with respect to a Kähler form of K3.
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We also considered U-dual of this heterotic theory, realized as IIB orientifold T 2/Z2 ×
K3. Two types of calibrated fivebranes are found to be dual to D3 branes and to certain D7

branes, respectively, and we matched some simple properties of the two sides. In particular,

we noted how the non-extensive nature of T 2 winding number is mimicked by D3 branes

in flux compactification of IIB theory, and performed a qualitative analysis.

Obviously this study still leaves much unaddressed. One interesting extension would

involve precisely matching domain walls in IIB theory and those in the heterotic theory. In

the latter, the domain wall interpolating two regions with different T 2 winding number of

fivebranes, should be realized as a smooth configuration of fivebranes themselves. This is

different from IIB side, where one find D3 branes ending on D5 or NS5, since one can now

look for a smooth domain wall solution complete with different number winding numbers

on the two sides.

Another interesting followup study would be how the low energy effective theory would

look like in the presence of fivebranes wrapping the base K3. For these, it is important

to understand the worldvolume moduli fields better. However, this could turn out to be a

difficult task since for consistency we should be careful to take into account the full effect

of backreaction, as far as compact manifold goes.
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